

Liquid Argon Technology for Neutrinos

Mitch Soderberg 7th IDS-NF Plenary Meeting

Talk Outline

• Introduction to Liquid Argon detectors for neutrinos.

The MicroBooNE Experiment

Future directions.

Introduction

- Liquid Argon Time Projection Chambers (LArTPCs) combine finegrained tracking and calorimetry, and appear scalable to very large size.
- •U.S. efforts to develop LArTPCs have expanded significantly in recent years.
- These efforts are aimed at developing the technology for a multi-kiloton detector that could be used to do a variety of physics (accelerator neutrinos, proton decay, astrophysics, ...)
- "Smaller" scale detectors, O(100 tons), also offer opportunity for important physics measurements.

Why Noble Liquids for Neutrinos?

- Abundant ionization electrons and scintillation light can both be used for detection.
- If liquids are highly purified (<0.1ppb), ionization can be drifted over long distances.
- Excellent dielectric properties accommodate very large voltages.
- Noble liquids are dense, so they make a good target for neutrinos.
- Argon is relatively cheap and easy to obtain (1% of atmosphere).
- Drawbacks?...no free protons...nuclear effects unavoidable.

	9	Ne	Ar	Kr	Xe	Water
Boiling Point [K] @ 1atm	4.2	27.1	87.3	120.0	165.0	373
Density [g/cm³]	0.125	1.2	1.4	2.4	3.0	1
Radiation Length [cm]	755.2	24.0	14.0	4.9	2.8	36.1
dE/dx [MeV/cm]	0.24	1.4	2.1	3.0	3.8	1.9
Scintillation [γ/MeV]	19,000	30,000	40,000	25,000	42,000	
Scintillation λ [nm]	80	78	128	150	175	

Liquid Argon Neutrino Detectors

- Neutrino interactions in the TPC produce charged particles that ionize the argon as they travel.
- Ionization is drifted along E-field to wireplanes, consisting of wires spaced ~millimeters apart.
- Location of wires within a plane provides position measurements...multiple planes give independent views.
- Timing of wire pulse information is combined with known drift speed to determine drift-direction coordinate.

Images from ICARUS 50-liter TPC.

Liquid Argon Efforts at Fermilab

Development focused on scaling LArTPCs to sizes necessary for long-baseline experiment.

Refs:

^{1.)} A Regnerable Filter for Liquid Argon Purification Curioni et al, NIM A605:306-311 (2009)

^{2.)} A system to test the effect of materials on electron drift lifetime in liquid argon and the effect of water Andrews et al, NIM A608:251-258 (2009)

Liquid Argon Worldwide

ICARUS Program

Europe/Japan Program

direct proof of long drift path up to 5 m

Charged particles test beam, calorimetry, non-evacuated vessels, LAr purity Full
engineering
demonstrator
for larger
detectors, with
a stand-alone
short baseline
physics
programme

31

MicroBooNE

- MicroBooNE will operate in the Booster neutrino beam at Fermilab starting in late 2013.
- Combines timely physics with hardware R&D necessary for the evolution of LArTPCs.
 - MiniBooNE low-energy excess
 - ▶ Low-Energy Cross-Sections
 - ▶ Cold Electronics (preamps in liquid)
 - Long drift (2.5m)

Cryostat Volume	150 Tons	
TPC Volume (l x w x h)	89 Tons (10.4m x 2.5m x 2.3m)	
# Electronic Channels	8256	
Electronics Style (Temp.)	CMOS (87 K)	
Wire Pitch (Plane Separation)	3 mm (3mm)	
Max. Drift Length (Time)	2.5m (1.5ms)	
Wire Properties	0.15mm diameter SS, Cu/Au plated	
Light Collection	~30 8" Hamamatsu PMTs	

- ★Stage 1 approval from Fermilab directorate in June 2008
- ★DOE CD-0 (Mission Need) in October 2009
- **★**DOE CD-1 June 2010
- ★DOE CD-2/3a (September 2011)

- → Joint NSF/DOE Project
- →\$1.1M NSF MRI for TPC, PMTs

MicroBooNE: Location

- MicroBooNE will sit on surface in on-axis Booster beam (BNB), and off-axis NuMI beam.
- Liquid Argon Test Facility will be located directly upstream of MiniBooNE enclosure. L=470m.
- Large event samples will allow a variety of cross-section measurements.

	BNB	NuMI
Total Events	145k	60k
$\nu_{\mu}CCQE$	68k	25k
NC πº	8k	3k
$\nu_{\rm e}$ CCQE	0.4k	1.2k
РОТ	$6x10^{20}$	$8x10^{20}$

Projected Event Rates for MicroBooNE in 2-3 years.

Neutrino Beams at Fermilab

MicroBooNE will be located in Liquid Argon Test Facility

- L010/185kA
- ME

10⁻³
10⁻²
10⁻³
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 ν_μ Energy (GeV)
NuMI Off-Axis Flux

MicroBooNE: Physics

- Address the MiniBooNE low energy excess
 - MiniBoone is a Cerenkov detector that looked for v_e appearance from a beam of v_{μ}
 - Does MicroBooNE confirm the excess?
 - Is the excess due to a electron-like or gamma-like process?

MiniBooNE v_e Appearance Result

MiniBooNE Result Excess

200-300MeV: 45.2±26.0 events

300-475MeV: 83.7±24.5 events

MicroBooNE will have ~5.5σ significance for electron-like excess, ~4σ for photon-like excess.

Refs:

1.) Unexplained Excess of Electron-Like Events From a 1-GeV Neutrino Beam MiniBooNE Collaboration, Phys. Rev. Lett. 102, 101802 (2009)

MicroBooNE: Physics

- Prove effectiveness of electron/gamma separation technique (using dE/dX information).
- Low Energy Cross-Section Measurements (CCQE, NC π^{o} , $\Delta \rightarrow N\gamma$, Photonuclear, ...)
- Continue development of automated reconstruction (building on ArgoNeuT's effort).

dE/dx in first 5cm of Simulated/Reconstructed Gamma/Electron showers.

Inclusive CC cross-section in neutrino-mode (simulated/ reconstructed/analyzed MC)

MicroBooNE: TPC

- TPC has 3 instrumented wireplanes (Two Induction at +/-60 from vertical, One Collection with vertical wires).
- Cathode is held at -125kV, setting up 500V/cm drift field.
- Wires are individually terminated around brass ferrules, then positioned on wire carriers.

Schematic of MicroBooNE TPC

Prototype wires and wire carrier boards.

MicroBooNE: Electronics

- CMOS preamplifiers located in liquid, attached to TPC.
- 12-bit ADCs sampled at 2MHz (i.e. 500ns per sample) for 4.8ms (x3 drift window).
- 1-hour data buffering for Supernova detection signal from SNEWS.

MicroBooNE: Cryogenics

- Cryogenic system consists of filters/pumps/etc... for circulating and purifying LAr.
- Cryostat is evacuable (though the plan is not to evacuate) and foam insulated.

Schematic of MicroBooNE Layout

LAPD @ Fermilab

Massive LArTPC Detectors

- Description here is the Reference design for the LBNE project.
- LArTPC at DUSEL would be two ~20 kTon modules.
- Detector located at the 800ft level at DUSEL.

~20 kTon LArTPC module(s)

800-ft. level layout.

Cryostat Volume	~25 kTons	
TPC Volume	~16.7 kTons	
# Readout Wires	~645000 (128:1 MUX)	
Wire Pitch	~3 mm	
Electronics Style (Temp.)	CMOS (87 K)	
Max. Drift Length	~2.5m	
Light Collection	TBD	

Liquid Argon for Neutrino Factory

Conclusion

- Liquid Argon detectors provide exceptional capabilities for neutrino physics, and there is significant R&D ongoing at Fermilab, and worldwide, to develop this technique for very large scales.
- MicroBooNE is the next major step in the U.S. plan for LArTPCs, and it will provide interesting physics and hardware development.
- Neutrino Factory...